Traffic forecasting is one of the most popular spatio-temporal tasks in the field of machine learning. A prevalent approach in the field is to combine graph convolutional networks and recurrent neural networks for the spatio-temporal processing. There has been fierce competition and many novel methods have been proposed. In this paper, we present the method of spatio-temporal graph neural rough differential equation (STG-NRDE). Neural rough differential equations (NRDEs) are a breakthrough concept for processing time-series data. Their main concept is to use the log-signature transform to convert a time-series sample into a relatively shorter series of feature vectors. We extend the concept and design two NRDEs: one for the temporal processing and the other for the spatial processing. After that, we combine them into a single framework. We conduct experiments with 6 benchmark datasets and 21 baselines. STG-NRDE shows the best accuracy in all cases, outperforming all those 21 baselines by non-trivial margins.
翻译:交通预测是机器学习领域中最受欢迎的时空任务之一。该领域中普遍采用将图卷积网络和循环神经网络相结合的方法进行时空处理。目前该领域存在激烈的竞争,并提出很多新颖的方法。本文中,我们提出了一个时空图神经粗糙微分方程(STG-NRDE)的方法。神经粗糙微分方程(NRDEs)是处理时间序列数据的一个突破性概念。它们的主要概念是使用对数签名变换将时间序列样本转换为相对较短的一系列特征向量。我们扩展了这个概念,并设计了两个NRDE,一个用于时间处理,另一个用于空间处理。之后,我们将它们结合成一个单一的框架。我们使用6个基准数据集和21个基线进行实验。STG-NRDE在所有案例中均表现出最佳准确性,优于所有21个基线,差距不可忽略。