Open-domain multi-turn conversations normally face the challenges of how to enrich and expand the content of the conversation. Recently, many approaches based on external knowledge are proposed to generate rich semantic and information conversation. Two types of knowledge have been studied for knowledge-aware open-domain dialogue generation: structured triples from knowledge graphs and unstructured texts from documents. To take both advantages of abundant unstructured latent knowledge in the documents and the information expansion capabilities of the structured knowledge graph, this paper presents a new dialogue generation model, Dynamic Multi-form Knowledge Fusion based Open-domain Chatt-ing Machine (DMKCM).In particular, DMKCM applies an indexed text (a virtual Knowledge Base) to locate relevant documents as 1st hop and then expands the content of the dialogue and its 1st hop using a commonsense knowledge graph to get apposite triples as 2nd hop. To merge these two forms of knowledge into the dialogue effectively, we design a dynamic virtual knowledge selector and a controller that help to enrich and expand knowledge space. Moreover, DMKCM adopts a novel dynamic knowledge memory module that effectively uses historical reasoning knowledge to generate better responses. Experimental results indicate the effectiveness of our method in terms of dialogue coherence and informativeness.


翻译:开放式多方向对话通常面临如何丰富和扩大对话内容的挑战。最近,提出了许多基于外部知识的多种方法,以产生丰富的语义和信息对话。研究了两种类型的知识,以生成有知识意识的开放域对话:由知识图和文件的无结构文本组成的三重结构。要利用文件中丰富的无结构潜在知识以及结构化知识图的信息扩展能力的优势,本文件将展示一个新的对话生成模型,动态多形式知识组合模式,以开放多端聊天机为基础。特别是,DMKCM应用了一种索引化文本(虚拟知识库),将相关文件定位为第1跳,然后扩大对话的内容,并开始使用共同知识图将相容的三重知识作为第二跳。要将这两种知识形式有效地纳入对话,我们设计了一种动态虚拟知识选择器和一个控制器,帮助丰富和扩大知识空间。此外,DMKCM采用一个新型的动态知识存储模块,有效地利用历史推理学一致性和更好反应的方法。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
18+阅读 · 2020年10月9日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员