An elegant strategy for proving impossibility results in distributed computing was introduced in the celebrated FLP consensus impossibility proof. This strategy is local in nature as at each stage, one configuration of a hypothetical protocol for consensus is considered, together with future valencies of possible extensions. This proof strategy has been used in numerous situations related to consensus, leading one to wonder why it has not been used in impossibility results of two other well-known tasks: set agreement and renaming. This paper provides an explanation of why impossibility proofs of these tasks have been of a global nature. It shows that a protocol can always solve such tasks locally, in the following sense. Given a configuration and all its future valencies, if a single successor configuration is selected, then the protocol can reveal all decisions in this branch of executions, satisfying the task specification. This result is shown for both set agreement and renaming, implying that there are no local impossibility proofs for these tasks.


翻译:值得庆贺的FLP协商一致的证明中引入了证明分配计算不可能结果的优雅战略。这一战略在每一阶段都是局部性的,考虑一种假定的协商一致协议的配置,同时考虑未来可能的延长期。这一证明战略在与协商一致有关的许多情况下已经使用,使人怀疑为什么没有在另外两项众所周知的任务 -- -- 确定协议和重新命名 -- -- 的不可能结果中加以使用。本文件解释了为什么无法证明这些任务的证据具有全球性质。它表明,从以下意义上讲,协议总是可以在当地解决这类任务。如果选择一个单一的继任配置,那么,协议可以揭示这一执行分支的所有决定,从而满足任务的要求。这一结果既表现为既定协议,也表现为重新命名,意味着这些任务没有当地不可能的证据。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年7月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月28日
Arxiv
0+阅读 · 2021年9月27日
Arxiv
0+阅读 · 2021年9月24日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年7月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员