In this paper we consider a variant of the well-known Achlioptas process for graphs adapted to monotone Boolean functions. Fix a number of choices $r\in \mathbb N$ and a sequence of increasing functions $(f_n)_{n\ge 1}$ such that, for every $n\ge 1$, $f_n:\{0,1\}^n\mapsto \{0,1\}$. Given $n$ bits which are all initially equal to 0, at each step $r$ 0-bits are sampled uniformly at random and are proposed to an agent. Then, the agent selects one of the proposed bits and turns it from 0 to 1 with the goal to reach the preimage of 1 as quickly as possible. We nearly characterize the conditions under which an acceleration by a factor of $r(1+o(1))$ is possible, and underline the wide applicability of our results by giving examples from the fields of Boolean functions and graph theory.
翻译:在本文中, 我们考虑一个已知的 Achlioptas 流程的变体, 用于用于单质布尔函数的图形 。 修改一些选择 $r\ in\ mathbbN$ 和增加函数的顺序 $( n)\\ n\ ge 1} 美元, 这样每1美元, 每1美元, $_n: 0. 1\\ n\\\\\ ⁇ 0. 1\\\\ 美元。 考虑到最初均等于 0 的零位元, 每步均以随机方式抽样, 0 美元比特, 并推荐给代理商。 然后, 代理商选择了其中的一个比特, 并将其从 0 转换为 1, 目标是尽快达到 1 的预期值 。 我们几乎可以描述每1 $( 1+1 ) 的加速度, 并且通过提供 Boolean 函数和图形理论领域的例子来强调我们结果的广泛适用性 。