This paper studies a Stackelberg game wherein a sender (leader) attempts to shape the information of a less informed receiver (follower) who in turn takes an action that determines the payoff for both players. The sender chooses signals to maximize its own utility function while the receiver aims to ascertain the value of a source that is privately known to the sender. It is well known that such sender-receiver games admit a vast number of equilibria and not all signals from the sender can be relied on as truthful. Our main contribution is an exact characterization of the minimum number of distinct source symbols that can be correctly recovered by a receiver in \textit{any} equilibrium of this game; we call this quantity the \textit{informativeness} of the sender. We show that the informativeness is given by the \textit{vertex clique cover number} of a certain graph induced by the utility function, whereby it can be computed based on the utility function alone without the need to enumerate all equilibria. We find that informativeness characterizes the existence of well-known classes of separating, pooling and semi-separating equilibria. We also compare informativeness with the amount of information obtained by the receiver when it is the leader and show that the informativeness is always greater than the latter, implying that the receiver is better off being a follower. Additionally, we also show that when the players play behavioral strategies, an equilibrium may not exist.
翻译:本文研究一个 Stackelberg 游戏, 其中发送者( 领导者) 试图塑造一个不那么知情的接收者( 追随者) 的信息, 而该接收者则选择信号, 以尽量扩大自己的工具功能, 而接收者则旨在确定发送者私下知道的来源的价值。 众所周知, 这种发送者- 接收者游戏包含大量均衡, 而不是发送者的所有信号都可被信赖为真实信息。 我们的主要贡献是准确描述这个游戏的平衡中接收者能够正确恢复的最起码数量的不同源符号; 我们称此数量为发送者 Textit{ 信息规范性 。 我们表明, 发送者- 接收者提供的信息性是由使用功能函数导出的特定图表的, 这样, 可以仅仅根据实用功能进行计算, 而不必列出所有不均匀。 我们发现, 信息性能描述出已知的不同源符号的最小数量, 以\ textitle、 集合和 Profincoln 平衡性为这个数量。 我们发现, 当我们所了解的信息性等级的分类、 和半信息性, 当我们所了解的操作者显示的排序时, 也是更精确的顺序时, 显示, 显示, 我们的顺序的顺序显示, 也是更精确性是更精确性, 显示, 显示, 我们的排序的顺序的顺序的顺序是更精确性是更精确性。