Methods for extracting audio and speech features have been studied since pioneering work on spectrum analysis decades ago. Recent efforts are guided by the ambition to develop general-purpose audio representations. For example, deep neural networks can extract optimal embeddings if they are trained on large audio datasets. This work extends existing methods based on self-supervised learning by bootstrapping, proposes various encoder architectures, and explores the effects of using different pre-training datasets. Lastly, we present a novel training framework to come up with a hybrid audio representation, which combines handcrafted and data-driven learned audio features. All the proposed representations were evaluated within the HEAR NeurIPS 2021 challenge for auditory scene classification and timestamp detection tasks. Our results indicate that the hybrid model with a convolutional transformer as the encoder yields superior performance in most HEAR challenge tasks.
翻译:自几十年前进行频谱分析的开创性工作以来,已经研究了提取音频和语音特征的方法。最近的努力以发展通用音频表达方式的雄心为导向。例如,深神经网络如果接受大型音频数据集培训,就能获取最佳嵌入方式。这项工作扩展了以自我监督的制靴学习为基础的现有方法,提出了各种编码结构,并探索了使用不同培训前数据集的影响。最后,我们提出了一个新的培训框架,以形成混合音频表达方式,将手工制作的和数据驱动的学习音频特征结合起来。所有拟议表达方式都在2021年Enge NeurIPS关于监听场分类和时间戳探测任务的挑战中进行了评估。我们的结果显示,以变形变形器作为编码器的混合模型在大多数曲项任务中产生优异性表现。