Estimating the 6D pose for unseen objects is in great demand for many real-world applications. However, current state-of-the-art pose estimation methods can only handle objects that are previously trained. In this paper, we propose a new task that enables and facilitates algorithms to estimate the 6D pose estimation of novel objects during testing. We collect a dataset with both real and synthetic images and up to 48 unseen objects in the test set. In the mean while, we propose a new metric named Infimum ADD (IADD) which is an invariant measurement for objects with different types of pose ambiguity. A two-stage baseline solution for this task is also provided. By training an end-to-end 3D correspondences network, our method finds corresponding points between an unseen object and a partial view RGBD image accurately and efficiently. It then calculates the 6D pose from the correspondences using an algorithm robust to object symmetry. Extensive experiments show that our method outperforms several intuitive baselines and thus verify its effectiveness. All the data, code and models will be made publicly available. Project page: www.graspnet.net/unseen6d
翻译:对未知物体的 6D 构成的估算对于许多真实世界应用有很大的需求。 然而, 目前最先进的估计方法只能处理以前训练过的物体。 在本文中, 我们提出一项新的任务, 使算法能够并便利于在测试期间对6D 构成的新天体的估计。 我们收集了一个包含真实和合成图像的数据集, 并在测试集中最多48个不可见天体的数据集。 在平均情况下, 我们提议了一个名为 Infimum ADD( IIDD) 的新指标, 这是一种对不同类型具有模糊性物体的不易测量方法。 也提供了这项任务的两阶段基线解决方案。 通过培训端至端三D 通信网络, 我们的方法可以准确和高效地在不可见天体和部分视图 RGBD 图像之间找到相应的点 。 然后用一个强大的算法来计算对应天体的 6D 。 广泛实验显示, 我们的方法比几个直观基线要强, 从而验证其有效性。 所有的数据、 代码和模型都将公开提供 。 项目页 : www. gragrespet. net. seet.