In general, graph representation learning methods assume that the train and test data come from the same distribution. In this work we consider an underexplored area of an otherwise rapidly developing field of graph representation learning: The task of out-of-distribution (OOD) graph classification, where train and test data have different distributions, with test data unavailable during training. Our work shows it is possible to use a causal model to learn approximately invariant representations that better extrapolate between train and test data. Finally, we conclude with synthetic and real-world dataset experiments showcasing the benefits of representations that are invariant to train/test distribution shifts.
翻译:一般而言,图表说明式学习方法假定,火车和测试数据来自同样的分布。在这项工作中,我们认为,一个本来迅速开发的图表说明式学习领域探索不足的领域:分配外(OOOD)图表分类任务,其中火车和测试数据分布不同,培训期间没有测试数据。我们的工作表明,有可能使用因果模型来了解在火车和测试数据之间更能推断出的大致变化不定的表示式。最后,我们用合成和真实世界数据集实验来总结,这些实验显示了在培训/测试分布变换方面变化不定的表示式的好处。