Natural Language Processing algorithms have made incredible progress recently, but they still struggle when applied to out-of-distribution examples. In this paper, we address a very challenging and previously underexplored version of this domain adaptation problem. In our setup an algorithm is trained on several source domains, and then applied to examples from an unseen domain that is unknown at training time. Particularly, no examples, labeled or unlabeled, or any other knowledge about the target domain are available to the algorithm at training time. We present PADA: A Prompt-based Autoregressive Domain Adaptation algorithm, based on the T5 model. Given a test example, PADA first generates a unique prompt and then, conditioned on this prompt, labels the example with respect to the NLP task. The prompt is a sequence of unrestricted length, consisting of pre-defined Domain Related Features (DRFs) that characterize each of the source domains. Intuitively, the prompt is a unique signature that maps the test example to the semantic space spanned by the source domains. In experiments with two tasks: Rumour Detection and Multi-Genre Natural Language Inference (MNLI), for a total of 10 multi-source adaptation scenarios, PADA strongly outperforms state-of-the-art approaches and additional strong baselines.


翻译:自然语言处理算法最近取得了令人难以置信的进展, 但是当应用到分布范围外的例子时它们仍然在挣扎着。 在本文中, 我们处理这个域适应问题的一个非常具有挑战性和以前探索不足的版本。 在我们的设置中, 一个算法在几个源域上接受培训, 然后应用到一个在培训时未知的隐蔽域的例子。 特别是, 在培训时, 算法没有实例、 标签或未标签, 或其他关于目标域的知识 。 我们展示了 PADA: 一个基于 T5 模型的快速自动递减域适应算法。 根据一个测试示例, PADA首先生成一个独特的快速版本, 然后以这个快速为条件, 在 NLP 任务上标出一个示例。 提示是一个不受限制的序列, 由预定义的多维相关域域( DRRFs) 构成每个源域特性的特性。 直观是一个独特的标志, 用来绘制源域所覆盖的语系空间的测试示例示例。 在实验中, PADADADR 10 高级基础 和多语言基础( MIN- gregy- ground the 10) comstrate- mind- aviewding 10 pride pridealviewding prideal des) viewapideal

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
利用Uncertainty修正Domain Adaptation中的伪标签
极市平台
3+阅读 · 2020年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
AI都干过什么让人细思极恐的事?
全球创新论坛
4+阅读 · 2017年9月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
相关资讯
利用Uncertainty修正Domain Adaptation中的伪标签
极市平台
3+阅读 · 2020年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
AI都干过什么让人细思极恐的事?
全球创新论坛
4+阅读 · 2017年9月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员