We consider the problem of estimating the probability of a large loss from a financial portfolio, where the future loss is expressed as a conditional expectation. Since the conditional expectation is intractable in most cases, one may resort to nested simulation. To reduce the complexity of nested simulation, we present a method that combines multilevel Monte Carlo (MLMC) and quasi-Monte Carlo (QMC). In the outer simulation, we use Monte Carlo to generate financial scenarios. In the inner simulation, we use QMC to estimate the portfolio loss in each scenario. We prove that using QMC can accelerate the convergence rates in both the crude nested simulation and the multilevel nested simulation. Under certain conditions, the complexity of MLMC can be reduced to $O(\epsilon^{-2}(\log \epsilon)^2)$ by incorporating QMC. On the other hand, we find that MLMC encounters catastrophic coupling problem due to the existence of indicator functions. To remedy this, we propose a smoothed MLMC method which uses logistic sigmoid functions to approximate indicator functions. Numerical results show that the optimal complexity $O(\epsilon^{-2})$ is almost attained when using QMC methods in both MLMC and smoothed MLMC, even in moderate high dimensions.
翻译:我们考虑的是估计从金融投资组合中蒙受巨大损失的可能性的问题,因为未来损失是有条件的预期。由于有条件的预期在多数情况下难以解决,人们可以采用嵌套模拟。为了降低嵌套模拟的复杂性,我们提出了一个将多层次蒙特卡洛(MLMC)和准蒙特卡洛(QMC)相结合的方法。在外部模拟中,我们使用蒙特卡洛(Monte Carlo)来产生财务假想。在内部模拟中,我们使用QMC来估计每个假设情景中的投资组合损失。我们证明,使用QMC可以加快粗嵌式模拟和多层次嵌套模拟的趋同率。在某些情况下,MLMC的复杂程度可以通过纳入QMC而降低到$O(\ epsilon ⁇ -2}(log \ epsilon)%2美元。另一方面,我们发现MLMC由于存在指标功能而遇到灾难性的联结问题。为了解决这个问题,我们建议一种平滑的MLMC方法,利用物流类比功能来接近指标功能。Numeralalalalalalalalal 的结果显示,在MMC中, 和MMML方法都达到了最高的复杂程度。