We propose a novel blocked version of the continuous-time bouncy particle sampler of Bouchard- C\^ot\'e et al. [2018] applicable to any differentiable probability density. Motivated by Singh et al. [2017], we also introduce an alternative implementation that leads to significant improvement in terms of effective sample size per second, and furthermore allows for parallelization at the cost of an extra logarithmic factor. The new algorithms are particularly efficient for latent state inference in high-dimensional state space models, where blocking in both space and time is necessary to avoid degeneracy of the proposal kernel. The efficiency of the blocked bouncy particle sampler, in comparison with both the standard implementation of the bouncy particle sampler and the particle Gibbs algorithm of Andrieu et al. [2010], is illustrated numerically for both simulated data and a challenging real-world financial dataset.
翻译:我们提出了一个适用于任何不同概率密度的Bouchard-C ⁇ ot\'e等人([2018] 等人(Bouchard-C ⁇ ot\'e et al.)连续时间充气颗粒取样器的新封装版本[2018]。在Singh等人([2017] )的激励下,我们还引入了一种可导致每秒有效采样规模显著改善的替代实施方法,并允许以额外的对数系数为代价进行平行。新的算法对于高维空间模型的潜伏状态推断特别有效,在高维度空间模型中,屏蔽空间和时间对于避免建议内核的退化是必要的。被封塞的充气颗粒取样器的效率,与微粒采样器和安卓等人(2010年)的粒子Globs 算法的标准实施方法相比,对于模拟数据和具有挑战性的实际世界金融数据集都是用数字表示的。