Music source separation is the task of extracting an estimate of one or more isolated sources or instruments (for example, drums or vocals) from musical audio. The task of music demixing or unmixing considers the case where the musical audio is separated into an estimate of all of its constituent sources that can be summed back to the original mixture. The Music Demixing Challenge was created to inspire new demixing research. Open-Unmix (UMX), and the improved variant CrossNet-Open-Unmix (X-UMX), were included in the challenge as the baselines. Both models use the Short-Time Fourier Transform (STFT) as the representation of music signals. The time-frequency uncertainty principle states that the STFT of a signal cannot have maximal resolution in both time and frequency. The tradeoff in time-frequency resolution can significantly affect music demixing results. Our proposed adaptation of UMX replaced the STFT with the sliCQT, a time-frequency transform with varying time-frequency resolution. Unfortunately, our model xumx-sliCQ achieved lower demixing scores than UMX.


翻译:音乐源分离的任务是从音乐音频中提取一种或多种孤立来源或乐器的估计值(例如鼓声或声响)。音乐解混或解混任务考虑到音乐音频被分离成所有组成来源的估计值,可以与原混合物相归。音乐解混挑战的创建是为了激发新的解混研究。Open-Unmix(UMX)和经改进的变体CrossNet-Open-Umix(X-UMX)被作为基准列入挑战中。两种模型都使用短时 Fourier变换(STFT)作为音乐信号的表示。时间-频率不确定原则指出,信号的STFT不能在时间和频率上具有最大分辨率。时间-频率分辨率的转换可以极大地影响音乐解混结果。我们提议的对UMX的调整用 sliCQT 取代STFT,这是时间-频率变换,但不幸的是,我们的模型 xumxliCQ实现了比UMX低解密得分数。

0
下载
关闭预览

相关内容

【AAAI2022】锚点DETR:基于transformer检测器的查询设计
专知会员服务
13+阅读 · 2021年12月31日
专知会员服务
26+阅读 · 2021年4月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
已删除
将门创投
3+阅读 · 2020年8月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月11日
Arxiv
0+阅读 · 2022年2月11日
Arxiv
3+阅读 · 2019年10月31日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2020年8月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员