It is estimated that around 70 million people worldwide are affected by a speech disorder called stuttering. With recent advances in Automatic Speech Recognition (ASR), voice assistants are increasingly useful in our everyday lives. Many technologies in education, retail, telecommunication and healthcare can now be operated through voice. Unfortunately, these benefits are not accessible for People Who Stutter (PWS). We propose a simple but effective method called 'Detect and Pass' to make modern ASR systems accessible for People Who Stutter in a limited data setting. The algorithm uses a context aware classifier trained on a limited amount of data, to detect acoustic frames that contain stutter. To improve robustness on stuttered speech, this extra information is passed on to the ASR model to be utilized during inference. Our experiments show a reduction of 12.18% to 71.24% in Word Error Rate (WER) across various state of the art ASR systems. Upon varying the threshold of the associated posterior probability of stutter for each stacked frame used in determining low frame rate (LFR) acoustic features, we were able to determine an optimal setting that reduced the WER by 23.93% to 71.67% across different ASR systems.
翻译:据估计,全世界约有7 000万人受到所谓言语障碍的影响。随着在自动语音识别(ASR)方面最近的进展,语音助理在日常生活中越来越有用。许多教育、零售、电信和保健方面的技术现在可以通过语音运作。不幸的是,这些好处对于施压(PWS)的人来说是无法获得的。我们提议了一个简单而有效的方法,即“检测和通过”使吸附在有限数据环境中的人能够使用现代的ASR系统。算法使用一个在有限数据量上经过培训的有背景感知的分类器,以探测含有结结实的声框。为了提高口语的稳健性,这种额外信息将传递给ASR模型,在推断过程中将使用。我们的实验显示,在各种艺术ASR系统状态中,WER错误率将降低12.18%至71.24%。在确定低框架率(LFR)声学特征时,我们得以确定一个最佳的定位,将WER值降低23.93至不同系统的ASR%。