We address the consistency of a kernel ridge regression estimate of the conditional mean embedding (CME), which is an embedding of the conditional distribution of $Y$ given $X$ into a target reproducing kernel Hilbert space $\mathcal{H}_Y$. The CME allows us to take conditional expectations of target RKHS functions, and has been employed in nonparametric causal and Bayesian inference. We address the misspecified setting, where the target CME is in the space of Hilbert-Schmidt operators acting from an input interpolation space between $\mathcal{H}_X$ and $L_2$, to $\mathcal{H}_Y$. This space of operators is shown to be isomorphic to a newly defined vector-valued interpolation space. Using this isomorphism, we derive a novel and adaptive statistical learning rate for the empirical CME estimator under the misspecified setting. Our analysis reveals that our rates match the optimal $O(\log n / n)$ rates without assuming $\mathcal{H}_Y$ to be finite dimensional. We further establish a lower bound on the learning rate, which shows that the obtained upper bound is optimal.
翻译:我们解决了有条件中值嵌入(CME)内核脊回归估计的一致性问题,即将给予美元X$的有条件分配额嵌入一个目标,以复制Hilbert内核空间$\mathcal{H ⁇ Y$。CME允许我们对目标RKHS功能抱有有条件的期望,并被用于非参数性因果和贝叶推断。我们解决了错误的设定,即目标CME位于Hilbert-Schmidt操作员的空间,该空间是来自$\mathcal{H ⁇ X$和$L_2$之间的输入内部空间,以至$\mathcal{H ⁇ Y$。操作员的这一空间被显示是无形态的,以新定义的矢量的矢量内空间。我们利用这一无形态为实验性CME估计师在错误设定下的新的和适应性统计学习率。我们的分析表明,我们的比率与从输入的输入空间($\log n/n$)和$_L_2美元之间的输入空间,而没有假设$\mathcalcalsal{H{Y_Blestal legilate destaldestrate legal leglegilding astaldal legildal legildaldal leg) 。