We study the estimation of causal parameters when not all confounders are observed and instead negative controls are available. Recent work has shown how these can enable identification and efficient estimation via two so-called bridge functions. In this paper, we tackle the primary challenge to causal inference using negative controls: the identification and estimation of these bridge functions. Previous work has relied on completeness conditions on these functions to identify the causal parameters and required uniqueness assumptions in estimation, and they also focused on parametric estimation of bridge functions. Instead, we provide a new identification strategy that avoids the completeness condition. And, we provide new estimators for these functions based on minimax learning formulations. These estimators accommodate general function classes such as Reproducing Kernel Hilbert Spaces and neural networks. We study finite-sample convergence results both for estimating bridge functions themselves and for the final estimation of the causal parameter under a variety of combinations of assumptions. We avoid uniqueness conditions on the bridge functions as much as possible.
翻译:我们研究因果参数的估算,如果不是所有混淆者都观察到,而是有负面控制。最近的工作表明,这些参数如何通过两个所谓的桥梁功能进行识别和有效估算。在本文件中,我们应对使用负面控制进行因果关系推断的主要挑战:确定和估计这些桥梁功能。以前的工作依靠这些功能的完整性条件来确定因果参数和估算中所需的独特性假设,这些功能还侧重于对桥梁功能的参数估计。相反,我们提供了一个新的识别战略,以避免完整性状况。我们还根据微型学习配方为这些功能提供了新的估计器。这些估计器包括一般功能类,如Recent Kernel Hilbert空间和神经网络。我们研究了有限类趋同结果,以估算桥梁功能本身,并根据各种假设组合对因果关系参数进行最后估计。我们尽可能避免在桥梁功能上出现独特性条件。