In this paper, the aim is multi-illumination color constancy. However, most of the existing color constancy methods are designed for single light sources. Furthermore, datasets for learning multiple illumination color constancy are largely missing. We propose a seed (physics driven) based multi-illumination color constancy method. GANs are exploited to model the illumination estimation problem as an image-to-image domain translation problem. Additionally, a novel multi-illumination data augmentation method is proposed. Experiments on single and multi-illumination datasets show that our methods outperform sota methods.
翻译:在本文中,目标是多光度颜色凝聚。 但是, 大部分现有的颜色凝聚方法都是为单一光源设计的。 此外, 学习多光度颜色凝聚的数据集基本上缺失。 我们建议一种基于种子( 物理驱动的) 的多光度颜色凝聚方法。 GAN 被利用来模拟光度估计问题, 作为一种图像到图像域域翻译问题。 此外, 提议了一种新型的多光度数据增强方法。 在单光度和多光度数据集上进行的实验显示, 我们的方法优于光度方法 。