Generative Adversarial Networks (GANs) have made a dramatic leap in high-fidelity image synthesis and stylized face generation. Recently, a layer-swapping mechanism has been developed to improve the stylization performance. However, this method is incapable of fitting arbitrary styles in a single model and requires hundreds of style-consistent training images for each style. To address the above issues, we propose BlendGAN for arbitrary stylized face generation by leveraging a flexible blending strategy and a generic artistic dataset. Specifically, we first train a self-supervised style encoder on the generic artistic dataset to extract the representations of arbitrary styles. In addition, a weighted blending module (WBM) is proposed to blend face and style representations implicitly and control the arbitrary stylization effect. By doing so, BlendGAN can gracefully fit arbitrary styles in a unified model while avoiding case-by-case preparation of style-consistent training images. To this end, we also present a novel large-scale artistic face dataset AAHQ. Extensive experiments demonstrate that BlendGAN outperforms state-of-the-art methods in terms of visual quality and style diversity for both latent-guided and reference-guided stylized face synthesis.
翻译:在高异性图像合成和石化面容生成方面,创世的Adversarial 网络(GANs)在高异性图像合成和立体化面相生成方面迈出了飞跃。最近,开发了一个层绘制机制,以改善Styliz化性能。然而,这一方法无法在单一模型中安装任意的风格,需要数百个风格一致的培训图像。为了解决上述问题,我们建议利用灵活混合战略和通用艺术数据集,将BlendGAN用于任意的立体化面貌生成。具体地说,我们首先在通用艺术数据集上培训一个自监督的风格编码器,以提取任意性风格的表达。此外,还提议了一个加权混合模块(WBMM),以隐含的方式将面貌和风格的表达方式组合起来,并控制任意的立体化效果。这样,BlendGAN就可以在统一模型中优于任意的风格,同时避免逐个案例地制作风格一致的培训图像。为此,我们还展示了一个新型大型艺术脸数据集。AAHQ。广泛的组合式组合式组合式组合式组合式组合式组合式组合式图像和制制的图像质量方法展示了BlalGDGAGD-Gd 格式制制制制制制制制制版制制制制制的系统制制的图像。