Additive Runge-Kutta methods designed for preserving highly accurate solutions in mixed-precision computation were proposed and analyzed in [8]. These specially designed methods use reduced precision or the implicit computations and full precision for the explicit computations. We develop a FORTRAN code to solve a nonlinear system of ordinary differential equations using the mixed precision additive Runge-Kutta (MP-ARK) methods on IBM POWER9 and Intel x86\_64 chips. The convergence, accuracy, runtime, and energy consumption of these methods is explored. We show that these MP-ARK methods efficiently produce accurate solutions with significant reductions in runtime (and by extension energy consumption).
翻译:为了在混合精确度计算中保存高度准确的解决方案而设计的Aditive Runge-Kutta方法在[8]中提出和分析。这些专门设计的方法使用精确度降低或隐含计算以及明确的计算完全精确度降低。我们开发了一种FORTRAN代码,用混合精密添加剂Runge-Kutta(MP-ARK)方法解决普通差分方程的非线性系统。探索了这些方法的趋同、准确性、运行时间和能量消耗。我们表明,这些MP-ARK方法高效地产生了精确的解决方案,运行时间(以及扩展能源消耗)将大幅下降。