We propose the first general and scalable framework to design certifiable algorithms for robust geometric perception in the presence of outliers. Our first contribution is to show that estimation using common robust costs, such as truncated least squares (TLS), maximum consensus, Geman-McClure, Tukey's biweight, among others, can be reformulated as polynomial optimization problems (POPs). By focusing on the TLS cost, our second contribution is to exploit sparsity in the POP and propose a sparse semidefinite programming (SDP) relaxation that is much smaller than the standard Lasserre's hierarchy while preserving exactness, i.e., the SDP recovers the optimizer of the nonconvex POP with an optimality certificate. Our third contribution is to solve the SDP relaxations at an unprecedented scale and accuracy by presenting STRIDE, a solver that blends global descent on the convex SDP with fast local search on the nonconvex POP. Our fourth contribution is an evaluation of the proposed framework on six geometric perception problems including single and multiple rotation averaging, point cloud and mesh registration, absolute pose estimation, and category-level object pose and shape estimation. Our experiments demonstrate that (i) our sparse SDP relaxation is exact with up to 60%-90% outliers across applications; (ii) while still being far from real-time, STRIDE is up to 100 times faster than existing SDP solvers on medium-scale problems, and is the only solver that can solve large-scale SDPs with hundreds of thousands of constraints to high accuracy; (iii) STRIDE provides a safeguard to existing fast heuristics for robust estimation (e.g., RANSAC or Graduated Non-Convexity), i.e., it certifies global optimality if the heuristic estimates are optimal, or detects and allows escaping local optima when the heuristic estimates are suboptimal.
翻译:我们提出第一个通用且可扩展的框架, 用于设计在外部线存在的情况下强力几何感知的可验证算法。 我们的第一个贡献是显示使用共同的稳健成本进行估算, 例如短短最小方( TLS ) 、 最大共识、 Geman- Mclure 、 Tukey 的双体重等等, 可以被重塑为多式优化问题 。 通过关注 TLS 成本, 我们的第二个贡献是利用持久性有机污染物的偏移, 并提出稀疏半不固定的编程( SDP) 放松, 这比标准的 Lasser 的等级要小得多。 也就是说, SDP 恢复了非默认的优化成本。 我们的第三个贡献是通过演示STRIDE 来以前所未有的规模和准确性解决 SDP 的松散, 将全球血统混杂在一起的 SNSID, 如果对非convevex OPO 进行快速的本地搜索, 我们的第四次贡献是评估关于六度目标级的解析度框架, 包括单级和多级的直径直径直径方值应用, 以及直径直方值的直方( 直方( 直方值) 直方值为直方值和直方值为直方值, 直方值至直方值为直方值和直方值至直方值至直方值至直方值为STR) 。