This paper presents a methodology for linear embedding of nonlinear systems that bounds the model error in terms of the prediction horizon and the magnitude of the derivatives of the system states. Using higher-order derivatives of general nonlinear dynamics that need not be known, we construct a Koopman operator-based linear representation and utilize Taylor series accuracy to derive an error bound. The error formula is used to choose the order of derivatives in the basis functions and obtain a data-driven Koopman model using a closed-form expression that can be computed in real time. The Koopman representation of the nonlinear system is then used to synthesize LQR feedback. The efficacy of the embedding approach is demonstrated with simulation and experimental results on the control of a tail-actuated robotic fish. Experimental results show that the proposed data-driven control approach outperforms a tuned PID (Proportional Integral Derivative) controller and that updating the data-driven model online significantly improves performance in the presence of unmodeled fluid disturbance. This paper is complemented with a video: https://youtu.be/9_wx0tdDta0.
翻译:本文为非线性系统的线性嵌入提供了一个方法,该方法将模型错误与预测地平线和系统衍生物的大小相连接。我们使用一般非线性动态的较高顺序衍生物,使用不需要知道的普通非线性动态,建造了Koopman操作员操作线性表示法,并利用泰勒系列精确度得出一个错误。错误公式用于在基础函数中选择衍生物的顺序,并使用可实时计算的闭式表达式获得数据驱动的库普曼模型。然后使用非线性系统的库普曼表示法来合成LQR反馈。嵌入方法的功效通过对尾部活化机器人鱼类的控制进行模拟和实验结果来展示。实验结果显示,拟议的数据驱动控制方法超越了调制 PID(Proportal Interimational Interivative)控制器,并且通过在线更新数据驱动模型大大改进了存在未经模拟的液体扰动的性。本文以视频作为补充: https://youtu.be_wx0dDta0。