In this paper, we solve the problem of finding a certified control policy that drives a robot from any given initial state and under any bounded disturbance to the desired reference trajectory, with guarantees on the convergence or bounds on the tracking error. Such a controller is crucial in safe motion planning. We leverage the advanced theory in Control Contraction Metric and design a learning framework based on neural networks to co-synthesize the contraction metric and the controller for control-affine systems. We further provide methods to validate the convergence and bounded error guarantees. We demonstrate the performance of our method using a suite of challenging robotic models, including models with learned dynamics as neural networks. We compare our approach with leading methods using sum-of-squares programming, reinforcement learning, and model predictive control. Results show that our methods indeed can handle a broader class of systems with less tracking error and faster execution speed. Code is available at https://github.com/sundw2014/C3M.
翻译:在本文中,我们解决了找到一个经认证的控制政策的问题,该控制政策将机器人从任何初始状态和在任何封闭干扰下从任何特定的初始状态驱动到理想的参考轨迹,保证追踪错误的趋同或界限。这样的控制器在安全动作规划中至关重要。我们利用控制电磁仪的先进理论,并设计一个基于神经网络的学习框架,以共同合成收缩度量和控制节误差系统的控制器。我们还提供了验证趋同和约束误差保证的方法。我们用一套具有挑战性的机器人模型,包括具有神经网络等先进动力的模型,展示了我们的方法的性能。我们将我们的方法与使用“平方组合”程序、强化学习和模型预测控制的主要方法进行比较。结果显示,我们的方法确实能够处理范围更广的系统,追踪错误较少,执行速度更快。代码可在https://github.com/sundw2014/C3M查阅。