Explicit stabilized methods are an efficient alternative to implicit schemes for the time integration of stiff systems of differential equations in large dimension. In this paper, we derive explicit stabilized integrators of orders one and two for the optimal control of stiff systems. We analyze their favorable stability properties based on the continuous optimality conditions. Furthermore, we study their order of convergence taking advantage of the symplecticity of the corresponding partitioned Runge-Kutta method involved for the adjoint equations. Numerical experiments including the optimal control of a nonlinear diffusion-advection PDE illustrate the efficiency of the new approach.
翻译:明确稳定的方法是大维差异方程式僵硬系统时间整合的隐含计划的一个有效替代方案。在本文中,我们为优化控制坚硬系统而获得一号和二号订单的明确稳定集成器。我们根据连续的最佳条件分析其有利的稳定性特性。此外,我们利用对准方程式所涉及的相应的分割式龙格-库塔方法的间隙性来研究其趋同顺序。数字实验,包括对非线性扩散适应性PDE的最佳控制,显示了新办法的效率。