This paper presents ConVex optimization-based Stochastic steady-state Tracking Error Minimization (CV-STEM), a new state feedback control framework for a class of Ito stochastic nonlinear systems and Lagrangian systems. Its innovation lies in computing the control input by an optimal contraction metric, which greedily minimizes an upper bound of the steady-state mean squared tracking error of the system trajectories. Although the problem of minimizing the bound is non-convex, its equivalent convex formulation is proposed utilizing state-dependent coefficient parameterizations of the nonlinear system equation. It is shown using stochastic incremental contraction analysis that the CV-STEM provides a sufficient guarantee for exponential boundedness of the error for all time with L2-robustness properties. For the sake of its sampling-based implementation, we present discrete-time stochastic contraction analysis with respect to a state- and time-dependent metric along with its explicit connection to continuous-time cases. We validate the superiority of the CV-STEM to PID, H-infinity, and baseline nonlinear controllers for spacecraft attitude control and synchronization problems.


翻译:本文介绍了ConVex优化型稳定状态跟踪错误最小化(CV-STEM)的新国家反馈控制框架(CV-STEM),这是一类Ito随机非线性非线性系统和Lagrangian系统的新国家反馈控制框架,其创新之处在于以最佳收缩度标准计算控制输入,该标准贪婪地将系统轨迹稳定状态平均正方位跟踪错误的上限最小化。虽然最大限度地减少约束的问题是非电解式的问题,但提议采用非线性系统等式的州独立系数参数参数来配方。我们用随机递增收缩分析来证明,CV-STEM为与L2-robustnity特性所有时间的错误的指数极限提供了充分保证。为了基于取样的实施,我们提出了关于状态和时间依赖性测量的离散时间收缩分析,以及它与连续时间案例之间的明确联系。我们验证了CV-STEM相对于PID、H-inity、以及基线非线性航天器控制问题的基线性控制器的优势。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
221+阅读 · 2020年6月5日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月12日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
221+阅读 · 2020年6月5日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员