Animals exhibit remarkable feats of behavioral flexibility and multifunctional control that remain challenging for robotic systems. The neural and morphological basis of multifunctionality in animals can provide a source of bio-inspiration for robotic controllers. However, many existing approaches to modeling biological neural networks rely on computationally expensive models and tend to focus solely on the nervous system, often neglecting the biomechanics of the periphery. As a consequence, while these models are excellent tools for neuroscience, they fail to predict functional behavior in real time, which is a critical capability for robotic control. To meet the need for real-time multifunctional control, we have developed a hybrid Boolean model framework capable of modeling neural bursting activity and simple biomechanics at speeds faster than real time. Using this approach, we present a multifunctional model of Aplysia californica feeding that qualitatively reproduces three key feeding behaviors (biting, swallowing, and rejection), demonstrates behavioral switching in response to external sensory cues, and incorporates both known neural connectivity and a simple bioinspired mechanical model of the feeding apparatus. We demonstrate that the model can be used for formulating testable hypotheses and discuss the implications of this approach for robotic control and neuroscience.
翻译:动物在行为灵活性和多功能控制方面表现出了出色的成就,这对机器人系统来说仍然具有挑战性。动物多功能的神经和形态基础可以为机器人控制者提供生物呼吸的来源。然而,许多现有的生物神经网络建模方法依赖计算成本高昂的模式,往往只侧重于神经系统,往往忽视外围生物机能。因此,这些模型虽然是神经科学的极好工具,但却未能实时预测功能行为,这是机器人控制的关键能力。为满足实时多功能控制的需要,我们开发了一个混合布林模型框架,能够模拟神经突发活动,以比实时更快的速度建立简单的生物机械。我们采用这种方法,提出了Aplysia卡利方诺尼喂养多功能模型,该模型在质量上再现了三种关键喂养行为(粘住、吞咽和拒绝),它们无法实时预测功能行为转变,这是机器人控制的关键能力。我们开发了一个混合型布林模型,既能模拟神经连接,又能将简单的生物感应力模型纳入供养机系统控制的影响。我们演示了这一模型的模型。我们用,可以用来进行测试。