We construct a map between a class of codes over $F_4$ and a family of non-rational Narain CFTs. This construction is complementary to a recently introduced relation between quantum stabilizer codes and a class of rational Narain theories. From the modular bootstrap point of view we formulate a polynomial ansatz for the partition function which reduces modular invariance to a handful of algebraic easy-to-solve constraints. For certain small values of central charge our construction yields optimal theories, i.e. those with the largest value of the spectral gap.
翻译:我们在一个超过4美元的代码类别和一个非合理纳拉因自由输电组之间绘制一张地图。 这一构造是对最近引入的量子稳定器代码和理性纳拉因理论之间的关系的一种补充。 从模块式靴子陷阱的观点看,我们为分离功能设计了一个多角度的安萨兹,该功能可以减少模块变换到少数易解的代数限制。对于某些小的中央电压值,我们建筑产生最佳理论,即光谱差距价值最大的理论。