Near real time change detection is important for a variety of Earth monitoring applications and remains a high priority for remote sensing science. Data sparsity, subtle changes, seasonal trends, and the presence of outliers make detecting actual landscape changes challenging. Adams and MacKay (2007) introduced Bayesian Online Changepoint Detection (BOCPD), a computationally efficient, exact Bayesian method for change detection. Incorporation of prior information allows for relaxed dependence on dense data and an extensive stable period, making this method applicable to relatively short time series and multiple changepoint detection. In this paper we conduct BOCPD with a multivariate linear regression framework that supports seasonal trends. We introduce a mechanism to make BOCPD robust against occasional outliers without compromising the computational efficiency of an exact posterior change distribution nor the detection latency. We show via simulations that the method effectively detects change in the presence of outliers. The method is then applied to monitor deforestation in Myanmar where we show superior performance compared to current online changepoint detection methods.
翻译:近实时变化探测对于各种地球监测应用十分重要,并且仍然是遥感科学的一个高度优先事项。数据宽度、微妙变化、季节性趋势以及外部线层的存在使得探测实际地貌变化具有挑战性。亚当斯和麦凯(2007年)引入了一种计算高效、精确的贝叶斯变化点探测法(BOCPD),这是一种计算高效的改变探测方法。纳入先前的信息可以放松对密集数据和广泛稳定时期的依赖,使这种方法适用于相对较短的时间序列和多个变化点探测。在本文中,我们用一个支持季节趋势的多变量线性回归框架来进行BOCCD。我们引入了一种机制,使BOCCD在不损及精确的事后变化分布的计算效率或探测耐久性的情况下对偶发的外部线层进行强健。我们通过模拟表明,这种方法能够有效检测外部存在的变化。然后,该方法被用于监测缅甸的毁林情况,在那里,我们表现出优于当前的在线变化点探测方法。