Linear regression is a popular machine learning approach to learn and predict real valued outputs or dependent variables from independent variables or features. In many real world problems, its beneficial to perform sparse linear regression to identify important features helpful in predicting the dependent variable. It not only helps in getting interpretable results but also avoids overfitting when the number of features is large, and the amount of data is small. The most natural way to achieve this is by using `best subset selection' which penalizes non-zero model parameters by adding $\ell_0$ norm over parameters to the least squares loss. However, this makes the objective function non-convex and intractable even for a small number of features. This paper aims to address the intractability of sparse linear regression with $\ell_0$ norm using adiabatic quantum computing, a quantum computing paradigm that is particularly useful for solving optimization problems faster. We formulate the $\ell_0$ optimization problem as a Quadratic Unconstrained Binary Optimization (QUBO) problem and solve it using the D-Wave adiabatic quantum computer. We study and compare the quality of QUBO solution on synthetic and real world datasets. The results demonstrate the effectiveness of the proposed adiabatic quantum computing approach in finding the optimal solution. The QUBO solution matches the optimal solution for a wide range of sparsity penalty values across the datasets.


翻译:线性回归是一种流行的机器学习方法,用于学习和预测独立变量或特征中真实价值产出或依赖变量。在许多现实世界问题中,它有利于执行细线性回归,以找出有助于预测依赖变量的重要特征。它不仅有助于获得可解释的结果,而且避免在功能数量大时过度适应,数据数量小。实现这一点的最自然方法是使用“最佳子选择”,通过在最小方块损失的参数上增加$\ell_0美元标准来惩罚非零模式参数。然而,这使得目标功能不凝固,即使是对少量功能来说也是难以解决的。本文旨在用半径量计算解决微线性回归的不易易性,而使用$\ell_0美元标准,这是一个量性计算模式,对于更快地解决优化问题特别有用。我们把$\ell_0美元的最优化问题设计成一种不易受限制的平方块优化平方块优化(QUBO) 问题,并且用D-Wave 量性量性计算机来解决这个问题。我们研究并比较了Q-BO 最佳解决方案的质量。我们提议的最佳方法的合成结果。

0
下载
关闭预览

相关内容

线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
50+阅读 · 2020年12月14日
【课程】概率图模型,卡内基梅隆大学邢波
专知会员服务
69+阅读 · 2019年11月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员