We introduce the "continuized" Nesterov acceleration, a close variant of Nesterov acceleration whose variables are indexed by a continuous time parameter. The two variables continuously mix following a linear ordinary differential equation and take gradient steps at random times. This continuized variant benefits from the best of the continuous and the discrete frameworks: as a continuous process, one can use differential calculus to analyze convergence and obtain analytical expressions for the parameters; but a discretization of the continuized process can be computed exactly with convergence rates similar to those of Nesterov original acceleration. We show that the discretization has the same structure as Nesterov acceleration, but with random parameters.
翻译:我们引入了“连续”内斯特罗夫加速度,这是内斯特罗夫加速度的一种近似变体,其变量由连续时间参数索引。两个变量按照直线普通差分方程式不断混合,并在随机时间采取梯度步骤。这个连续变体从最好的连续和离散框架中受益:作为一个连续过程,可以使用不同的微积分分析趋同和参数的分析表达方式;但是,可以完全按照与内斯特罗夫原加速度相似的趋同率来计算内斯特罗夫加速度的相分离过程。我们表明,离散变体的结构与内斯特罗夫加速度相同,但有随机参数。