With the accelerated advancement of IoT, diverse devices are ubiquitously deployed in environments. Building on this, Web of Things (WoT) further integrates fragmented device services and provides unified interfaces using standardized Web technologies, promoting the development and deployment of WoT applications to sense and regulate the environment. However, disparate WoT applications independently control devices in the WoT environment, causing interference among devices and with the environment. This results in device behaviors that deviate from user expectations, causing violations of the user's desired environment properties. The intricate interplay of applications, user activities, and environment changes makes identifying and resolving potential violations a complex task. In this paper, we introduce EnvGuard, an environment-centric approach for property description, violation identification, and resolution in WoT environment. EnvGuard proposes a conceptual schema to model the relationship between device services and environment context, and automatically extends the conceptual schema into a specific environment representation based on device and space information. Furthermore, EnvGuard employs a template-based approach, enabling users to describe spatial and temporal properties based on the abstract device effects on the environment, and translating properties description into formal expressions. EnvGuard adopts a hybrid model checking method to respectively identify the spatial and temporal violations, and a resolution strategy that align with user intention is proposed to resolve violations. We evaluate EnvGuard through user studies and our proposed dataset, which is constructed by collecting real-world data from a laboratory WoT environment and manually labeling ten types of violations. The results confirm the usability, feasibility and efficiency of EnvGuard.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员