We present a data-driven modeling and control framework for physics-based building emulators. Our approach comprises: (a) Offline training of differentiable surrogate models that speed up model evaluations, provide cheap gradients, and have good predictive accuracy for the receding horizon in Model Predictive Control (MPC) and (b) Formulating and solving nonlinear building HVAC MPC problems. We extensively verify the modeling and control performance using multiple surrogate models and optimization frameworks for different available test cases in the Building Optimization Testing Framework (BOPTEST). The framework is compatible with other modeling techniques and customizable with different control formulations. The modularity makes the approach future-proof for test cases currently in development for physics-based building emulators and provides a path toward prototyping predictive controllers in large buildings.
翻译:我们为以物理为基础的建筑模拟器提出了一个数据驱动模型和控制框架,我们的方法包括:(a) 对不同替代模型进行离线培训,以加快模型评估,提供廉价梯度,并对模型预测控制(MPC)中的退缩地平线具有良好的预测准确性;(b) 制定和解决非线性建筑的HVAC MPC问题。我们利用多种替代模型和优化框架,对建筑优化测试框架(BOPTEST)中不同现有测试案例进行广泛核查模型和控制性能。这个框架与其他模型技术相容,并适合不同的控制配方。模块化使得目前为基于物理的建筑模拟器开发的测试案例的未来方法可以避免,并为大型建筑中的原型预测控制器提供了一条路径。