This paper proposes a formal approach to online learning and planning for agents operating in a priori unknown, time-varying environments. The proposed method computes the maximally likely model of the environment, given the observations about the environment made by an agent earlier in the system run and assuming knowledge of a bound on the maximal rate of change of system dynamics. Such an approach generalizes the estimation method commonly used in learning algorithms for unknown Markov decision processes with time-invariant transition probabilities, but is also able to quickly and correctly identify the system dynamics following a change. Based on the proposed method, we generalize the exploration bonuses used in learning for time-invariant Markov decision processes by introducing a notion of uncertainty in a learned time-varying model, and develop a control policy for time-varying Markov decision processes based on the exploitation and exploration trade-off. We demonstrate the proposed methods on four numerical examples: a patrolling task with a change in system dynamics, a two-state MDP with periodically changing outcomes of actions, a wind flow estimation task, and a multi-armed bandit problem with periodically changing probabilities of different rewards.


翻译:本文建议了一种正式的在线学习和规划方法,用于在先天未知、时间变化的环境中运作的代理商。考虑到系统运行早期一个代理商对环境的观察,并假定对系统动态最大变化率的界限的了解,拟议方法计算了最可能的环境模型。这种方法概括了在未知的Markov决策过程学习算法中常用的估计方法,具有时间变化性过渡概率,但也能够迅速和正确地确定系统变化后的动态。根据拟议方法,我们推广用于学习时间变化性马尔科夫决策过程的勘探奖金,在学习时间变化性马尔科夫决策过程中引入一种不确定性的概念,并根据开发和探索交易,为时间变化的马尔科夫决策过程制定一项控制政策。我们用四个数字实例展示了拟议方法:巡逻任务,系统动态变化,两州MDP,行动结果定期变化,风流估计任务,以及多臂强、不同奖励概率变化不时变化的问题。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年3月29日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员