We present optimal parametrised motion planning algorithms which can be used in designing practical systems controlling objects that move in Euclidean $d$-space, with $d\geq 2$ even, without collisions and in the presence of two obstacles with unknown a priori positions. Our algorithms are optimal in a very concrete sense, namely, they have the minimal possible number of local planners.
翻译:我们提出了最佳的模拟运动规划算法,可用于设计实用的系统,控制在欧几里得地(oclidean $d$-space)移动的物体,甚至使用$d\geq 2美元,不发生碰撞,同时存在两个障碍,其先验位置不明。 我们的算法在非常具体的意义上是最佳的,即它们拥有尽可能少的当地规划人员。