Multi-agent Markov Decision Processes (MMDPs) arise in a variety of applications including target tracking, control of multi-robot swarms, and multiplayer games. A key challenge in MMDPs occurs when the state and action spaces grow exponentially in the number of agents, making computation of an optimal policy computationally intractable for medium- to large-scale problems. One property that has been exploited to mitigate this complexity is transition independence, in which each agent's transition probabilities are independent of the states and actions of other agents. Transition independence enables factorization of the MMDP and computation of local agent policies but does not hold for arbitrary MMDPs. In this paper, we propose an approximate transition dependence property, called $\delta$-transition dependence and develop a metric for quantifying how far an MMDP deviates from transition independence. Our definition of $\delta$-transition dependence recovers transition independence as a special case when $\delta$ is zero. We develop a polynomial time algorithm in the number of agents that achieves a provable bound on the global optimum when the reward functions are monotone increasing and submodular in the agent actions. We evaluate our approach on two case studies, namely, multi-robot control and multi-agent patrolling example.


翻译:多试剂Markov决定程序(MMDPs)出现在各种应用中,包括目标跟踪、多机器人群控和多玩家游戏。当国家和行动空间在代理商数量上成倍增长时,MMDPs面临一个关键的挑战,使得计算最佳政策对中大问题难以计算。为缓解这一复杂性而开发的一个财产是过渡独立,其中每个代理商的过渡概率独立于国家和其他代理商的行动。过渡独立使得MMDP的因子化和计算地方代理商政策,但不能维持任意的MMMDPs。在本文件中,我们提出一个大致过渡依赖性财产,呼吁$\delta$-过渡依赖性,并制定一个衡量MMMDDP脱离过渡独立的程度的衡量标准。我们关于$\delta$-过渡性依赖性依赖性的定义在美元为零时可以恢复过渡性独立的特殊案例。我们开发了一种多边时间算法,即对可实现全球最佳约束的代理商政策的代理商数量进行计算,即在我们的最佳模式的多式监管中,即我们的最佳监管机构增加了单式的多式研究。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月22日
Arxiv
4+阅读 · 2021年4月13日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员