Automated segmentation of pathological regions of interest has been shown to aid prognosis and follow up treatment. However, accurate pathological segmentations require high quality of annotated data that can be both cost and time intensive to generate. In this work, we propose an automated two-step method that evaluates the quality of medical images from 3D image stacks using a U-net++ model, such that images that can aid further training of the U-net++ model can be detected based on the disagreement in segmentations produced from the final two layers. Images thus detected can then be used to further fine tune the U-net++ model for semantic segmentation. The proposed QU-net++ model isolates around 10\% of images per 3D stack and can scale across imaging modalities to segment cysts in OCT images and ground glass opacity in Lung CT images with Dice cores in the range 0.56-0.72. Thus, the proposed method can be applied for multi-modal binary segmentation of pathology.


翻译:在这项工作中,我们提出一个自动的两步方法,用U-net++模型来评价3D图像堆中3D图像的质量,这样就可以根据最后两层的分解差异,检测出有助于进一步培训U-net++模型的图像。因此检测到的图像可以用来进一步微调用于语义分解的U-net+模型。拟议的QU-net++模型将每层3D图像的10 ⁇ 左右分离出来,并可以跨越成像模式,将OCT图像中的成像细胞和Dice核心范围为0.56-072的肺部CT图像中的地面玻璃不透明化成像。因此,拟议的方法可以用于多模式的病理分解。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Top
微信扫码咨询专知VIP会员