A circuit $\mathcal{C}$ samples a distribution $\mathbf{X}$ with an error $\epsilon$ if the statistical distance between the output of $\mathcal{C}$ on the uniform input and $\mathbf{X}$ is $\epsilon$. We study the hardness of sampling a uniform distribution over the set of $n$-bit strings of Hamming weight $k$ denoted by $\mathbf{U}^n_k$ for _decision forests_, i.e. every output bit is computed as a decision tree of the inputs. For every $k$ there is an $O(\log n)$-depth decision forest sampling $\mathbf{U}^n_k$ with an inverse-polynomial error [Viola 2012, Czumaj 2015]. We show that for every $\epsilon > 0$ there exists $\tau$ such that for decision depth $\tau \log (n/k) / \log \log (n/k)$, the error for sampling $\mathbf{U}_k^n$ is at least $1-\epsilon$. Our result is based on the recent robust sunflower lemma [Alweiss, Lovett, Wu, Zhang 2021, Rao 2019]. Our second result is about matching a set of $n$-bit strings with the image of a $d$-_local_ circuit, i.e. such that each output bit depends on at most $d$ input bits. We study the set of all $n$-bit strings whose Hamming weight is at least $n/2$. We improve the previously known locality lower bound from $\Omega(\log^* n)$ [Beyersdorff, Datta, Krebs, Mahajan, Scharfenberger-Fabian, Sreenivasaiah, Thomas and Vollmer, 2013] to $\Omega(\sqrt{\log n})$, leaving only a quartic gap from the best upper bound of $O(\log^2 n)$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
161+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月20日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员