Image inpainting involves filling missing areas of a corrupted image. Despite impressive results have been achieved recently, restoring images with both vivid textures and reasonable structures remains a significant challenge. Previous methods have primarily addressed regular textures while disregarding holistic structures due to the limited receptive fields of Convolutional Neural Networks (CNNs). To this end, we study learning a Zero-initialized residual addition based Incremental Transformer on Structural priors (ZITS++), an improved model upon our conference work, ZITS~\cite{dong2022incremental}. Specifically, given one corrupt image, we present the Transformer Structure Restorer (TSR) module to restore holistic structural priors at low image resolution, which are further upsampled by Simple Structure Upsampler (SSU) module to higher image resolution. To recover image texture details, we use the Fourier CNN Texture Restoration (FTR) module, which is strengthened by Fourier and large-kernel attention convolutions. Furthermore, to enhance the FTR, the upsampled structural priors from TSR are further processed by Structure Feature Encoder (SFE) and optimized with the Zero-initialized Residual Addition (ZeroRA) incrementally. Besides, a new masking positional encoding is proposed to encode the large irregular masks. Compared with ZITS, ZITS++ improves the FTR's stability and inpainting ability with several techniques. More importantly, we comprehensively explore the effects of various image priors for inpainting and investigate how to utilize them to address high-resolution image inpainting with extensive experiments. This investigation is orthogonal to most inpainting approaches and can thus significantly benefit the community. Codes and models will be released in https://github.com/DQiaole/ZITS_inpainting.


翻译:尽管最近取得了令人印象深刻的成果,但以生动的纹理和合理的结构恢复图像仍然是一项重大挑战。以前的方法主要解决了常规质地,而忽视了整体结构,因为革命神经网络(CNNs)的可接受领域有限。为此,我们研究如何在结构前科上学习一个零初始剩余添加基于结构前科的递增变异变异器(ZITS++),这是我们会议工作改进的模型,ZITS ⁇ cite{tlo2022increment}。具体来说,鉴于一个腐败的图像,我们展示了变异结构恢复机(TSR)模块,以低图像分辨率恢复整体结构前科,而由于简单的结构上层神经网络(SSUpsampler)模块进一步更新了整体结构结构结构结构结构。为了恢复图像细节细节,我们使用FourierCNN Texturereture Refure Reformation(FIT+TR)模块,该模块的强化了FITRTR, 其上版结构前版结构更新了OILMLS-SBIal 和SIMBIDRIDRIL 的升级能力,因此将进一步在SFSFSFSDRDSBSDRDRBDRBSBSBSBSBSBDBS 上进行进一步升级的升级的升级的升级和升级。

0
下载
关闭预览

相关内容

图像修复(英语:Inpainting)指重建的图像和视频中丢失或损坏的部分的过程。例如在博物馆中,这项工作常由经验丰富的博物馆管理员或者艺术品修复师来进行。数码世界中,图像修复又称图像插值或视频插值,指利用复杂的算法来替换已丢失、损坏的图像数据,主要替换一些小区域和瑕疵。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
17+阅读 · 2022年2月23日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Exploring Visual Relationship for Image Captioning
Arxiv
14+阅读 · 2018年9月19日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员