Convolutional neural networks (CNNs) have been applied to learn spatial features for high-resolution (HR) synthetic aperture radar (SAR) image classification. However, there has been little work on integrating the unique statistical distributions of SAR images which can reveal physical properties of terrain objects, into CNNs in a supervised feature learning framework. To address this problem, a novel end-to-end supervised classification method is proposed for HR SAR images by considering both spatial context and statistical features. First, to extract more effective spatial features from SAR images, a new deep spatial context encoder network (DSCEN) is proposed, which is a lightweight structure and can be effectively trained with a small number of samples. Meanwhile, to enhance the diversity of statistics, the nonstationary joint statistical model (NS-JSM) is adopted to form the global statistical features. Specifically, SAR images are transformed into the Gabor wavelet domain and the produced multi-subbands magnitudes and phases are modeled by the log-normal and uniform distribution. The covariance matrix is further utilized to capture the inter-scale and intra-scale nonstationary correlation between the statistical subbands and make the joint statistical features more compact and distinguishable. Considering complementary advantages, a feature fusion network (Fusion-Net) base on group compression and smooth normalization is constructed to embed the statistical features into the spatial features and optimize the fusion feature representation. As a result, our model can learn the discriminative features and improve the final classification performance. Experiments on four HR SAR images validate the superiority of the proposed method over other related algorithms.


翻译:为解决这一问题,对合成孔径雷达图像分类应用了革命神经网络(CNN)来学习高分辨率合成孔径雷达(HR)图像分类的空间特征,然而,在将可显示地形物体物理特性的合成孔径雷达图像的独特统计分布纳入有监督特征学习框架的CNN方面,几乎没有开展什么工作;为了解决这一问题,为合成孔径雷达图像提出了一种新的端到端监督分类方法,同时考虑到空间背景和统计特征;首先,为了从合成孔径雷达图像中提取更有效的空间特征,提议建立一个新的深空环境编码网络(DSCEN),这是一个轻度结构,可以有效地用少量样本来培训。与此同时,为了加强统计多样性,采用了非静止联合统计模型(NS-JSM)来形成全球统计特征。具体地说,合成孔径雷达图像被转换成加博波特域,生成的多子波段大小和阶段的模型由逻辑正常和统一分布模式模拟。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
相关资讯
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员