Instantaneous dynamic equilibrium (IDE) is a standard game-theoretic concept in dynamic traffic assignment in which individual flow particles myopically select en route currently shortest paths towards their destination. We analyze IDE within the Vickrey bottleneck model, where current travel times along a path consist of the physical travel times plus the sum of waiting times in all the queues along a path. Although IDE have been studied for decades, several fundamental questions regarding equilibrium computation and complexity are not well understood. In particular, all existence results and computational methods are based on fixed-point theorems and numerical discretization schemes and no exact finite time algorithm for equilibrium computation is known to date. As our main result we show that a natural extension algorithm needs only finitely many phases to converge leading to the first finite time combinatorial algorithm computing an IDE. We complement this result by several hardness results showing that computing IDE with natural properties is NP-hard.
翻译:即时动态平衡(IDE)是动态交通任务中一个标准的游戏理论概念,在通往目的地的道路上,个人流动粒子在目前最短的路径上以近距离选择。我们在Vickrey瓶颈模型中分析了IDE, 这条路径上的当前旅行时间由实际旅行时间加上所有队列沿路径的等待时间总和组成。虽然已经研究了几十年,但关于平衡计算和复杂性的一些基本问题并没有得到很好理解。特别是,所有存在的结果和计算方法都基于固定点的理论和数字离散计划,迄今为止还没有准确的均衡计算时间算法。我们的主要结果显示,自然扩展算法只需要有限的许多阶段才能汇合到计算一个IDE的第一次有限时间组合算法。我们通过一些硬性结果来补充这一结果,显示计算自然特性的 IDE 计算是硬硬化的。