We apply the collision-based hybrid introduced in \cite{hauck} to the Boltzmann equation with the BGK operator and a hyperbolic scaling. An implicit treatment of the source term is used to handle stiffness associated with the BGK operator. Although it helps the numerical scheme become stable with a large time step size, it is still not obvious to achieve the desired order of accuracy due to the relationship between the size of the spatial cell and the mean free path. Without asymptotic preserving property, a very restricted grid size is required to resolve the mean free path, which is not practical. Our approaches are based on the noncollision-collision decomposition of the BGK equation. We introduce the arbitrary order of nodal discontinuous Galerkin (DG) discretization in space with a semi-implicit time-stepping method; we employ the backward Euler time integration for the uncollided equation and the 2nd order predictor-corrector scheme for the collided equation, i.e., both source terms in uncollided and collided equations are treated implicitly and only streaming term in the collided equation is solved explicitly. This improves the computational efficiency without the complexity of the numerical implementation. Numerical results are presented for various Knudsen numbers to present the effectiveness and accuracy of our hybrid method. Also, we compare the solutions of the hybrid and non-hybrid schemes.
翻译:暂无翻译