In a previous paper, a technique was suggested to avoid order reduction with any explicit exponential Runge-Kutta method when integrating initial boundary value nonlinear problems with time-dependent boundary conditions. In this paper, we significantly simplify the full discretization formulas to be applied under conditions which are nearly always satisfied in practice. Not only a simpler linear combination of $\varphi_j$-functions is given for both the stages and the solution, but also the information required on the boundary is so much simplified that, in order to get local order three, it is no longer necessary to resort to numerical differentiation in space. The technique is then shown to be computationally competitive against other widely used methods with high enough stiff order through the standard method of lines.
翻译:暂无翻译