To find consistent initial data points for a system of differential-algebraic equations, requires the identification of its missing constraints. An efficient class of structural methods exploiting a dependency graph for this task was initiated by Pantiledes. More complete methods rely on differential-algebraic geometry but suffer from other issues (e.g. high complexity). In this paper we give a new class of efficient structural methods combined with new tools from numerical real algebraic geometry that has much improved completeness properties. Existing structural methods may fail for a system of differential-algebraic equations if its Jacobian matrix after differentiation is still singular due to symbolic cancellation or numerical degeneration. Existing structural methods can only handle degenerated cases caused by symbolic cancellation. However, if a system has parameters, then its parametric Jacobian matrix may be still singular after application of the structural method for certain values of the parameters. This case is called numerical degeneration. For polynomially nonlinear systems of differential-algebraic equations, numerical methods are given to solve both degenerated cases using numerical real algebraic geometry. First, we introduce a witness point method, which produces at least one witness point on every constraint component. This can help to ensure constant rank and detection of degeneration on all components of such systems. Secondly, we present a Constant Rank Embedding Lemma, and based on it propose an Index Reduction by Embedding (IRE) method which can construct an equivalent system with a full rank Jacobian matrix. Thirdly, IRE leads to a global structural differentiation method, to solve degenerated differential-algebraic equations on all components numerically. Application examples from circuits, mechanics, are used to demonstrate our method.
翻译:要为差异- 数值方程式找到一致的初始数据点, 就需要确定它缺失的制约。 由 Papiledes 启动的、 利用此任务依赖图的高效结构方法类。 更完整的方法依赖于差异- 数值几何测量, 但也存在其他问题( 例如高度复杂 ) 。 在本文中, 我们给出了一个新的效率结构方法类, 加上数字真实代数的新的工具, 其数值真实代数的几何测算功能大大改进了完整性。 现有的结构方法对于差异- 数值方程式系统来说可能失败, 如果差异后雅各布矩阵矩阵仍然单数, 因为符号取消或数字变换导致的偏差。 现有的结构方法只能处理因符号取消而出现的变形案例。 但是, 如果系统有参数, 那么其参数的参数的参数的参数的偏差性矩阵可能仍然具有奇特性。 这个例子被称为数字- 数字- 数值- 数值- 数值- 数值- 数值- 数值- 数值- 数值- 数值- 数值- 数值- 数值- 数值- 数值- 数值- 数值- 数值- 数值- 数值- 数值- 数值- 数值- 数值- 数值- 数值- 和 数值- 数值- 数字- 数字- 数字- 数字- 序列- 结构- 显示- 显示-- 和 一种方法- 显示- 和 以- 方法- 显示- 方法- 方法-- 一种 一种 一种 一种 一种 以- 方法- 方法- 显示- 以- 一种 一种 以- 一种 一种 方法- 以- 以- 一种 一种 一种 以- 以- 表示- 以- 以- 方法- 方法- 以- 以- 梯- 以- 以- 以- 以- 以- 以- 梯变式- 梯变式- 方法- 以- 以- 以- 以- 以- 以- 以- 以- 以- 方法- 以- 以- 以- 以- 以- 以- 以 以 以 以- 以- 以