We address the detection of material defects, which are inside a layered material structure using compressive sensing based multiple-output (MIMO) wireless radar. Here, the strong clutter due to the reflection of the layered structure's surface often makes the detection of the defects challenging. Thus, sophisticated signal separation methods are required for improved defect detection. In many scenarios, the number of defects that we are interested in is limited and the signaling response of the layered structure can be modeled as a low-rank structure. Therefore, we propose joint rank and sparsity minimization for defect detection. In particular, we propose a non-convex approach based on the iteratively reweighted nuclear and $\ell_1-$norm (a double-reweighted approach) to obtain a higher accuracy compared to the conventional nuclear norm and $\ell_1-$norm minimization. To this end, an iterative algorithm is designed to estimate the low-rank and sparse contributions. Further, we propose deep learning to learn the parameters of the algorithm (i.e., algorithm unfolding) to improve the accuracy and the speed of convergence of the algorithm. Our numerical results show that the proposed approach outperforms the conventional approaches in terms of mean square errors of the recovered low-rank and sparse components and the speed of convergence.


翻译:我们利用基于压缩传感器的多输出(MIIMO)无线雷达来解决物质缺陷的探测问题,材料缺陷存在于一个分层材料结构中。这里,由于分层结构表面的反射而出现强烈的杂乱,因此发现缺陷往往具有挑战性。因此,需要复杂的信号分离方法来改进缺陷的检测。在许多情形中,我们感兴趣的缺陷数量有限,分层结构的信号反应可以以低层次结构为模型。因此,我们提议为发现缺陷而采用联合等级和宽度最小化。特别是,我们提议以迭代重标核和1美元-美元-诺尔姆(一种双重加权方法)为基础的非碳化方法,以获得比常规核规范更高的准确度和最小化的$/ell_1美元。为此,我们设计了一个迭代算法,以估计低层次和稀少的贡献。此外,我们提议深入学习算法的参数(即正在演算法),以便提高算法的准确性和趋同速度。我们的数字结果显示,低水平法和低水平方法的恢复速度。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【泡泡点云时空】PU-Net:点云上采样网络(CVPR2018-6)
泡泡机器人SLAM
6+阅读 · 2018年8月16日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【泡泡点云时空】PU-Net:点云上采样网络(CVPR2018-6)
泡泡机器人SLAM
6+阅读 · 2018年8月16日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员