In recent years, federated learning (FL) has been widely applied for supporting decentralized collaborative learning scenarios. Among existing FL models, federated logistic regression (FLR) is a widely used statistic model and has been used in various industries. To ensure data security and user privacy, FLR leverages homomorphic encryption (HE) to protect the exchanged data among different collaborative parties. However, HE introduces significant computational overhead (i.e., the cost of data encryption/decryption and calculation over encrypted data), which eventually becomes the performance bottleneck of the whole system. In this paper, we propose HAFLO, a GPU-based solution to improve the performance of FLR. The core idea of HAFLO is to summarize a set of performance-critical homomorphic operators (HO) used by FLR and accelerate the execution of these operators through a joint optimization of storage, IO, and computation. The preliminary results show that our acceleration on FATE, a popular FL framework, achieves a 49.9$\times$ speedup for heterogeneous LR and 88.4$\times$ for homogeneous LR.


翻译:近年来,联谊学习(FL)被广泛用于支持分散协作学习方案,在现有FL模型中,联谊后勤回归(FLR)是一个广泛使用的统计模型,并已用于各行业。为了确保数据安全和用户隐私,FLR利用同质加密(HHE)来保护不同合作方之间交换的数据。然而,HE引入了重要的计算间接费用(即数据加密/解密和加密数据计算的成本),最终成为整个系统的性能瓶颈。在本文件中,我们提出了基于GAFLO的GAFLO(基于GPU的解决方案),以改善FLR的性能。HAFLO的核心思想是概述FLR使用的一套对性有批评性的同质操作器(HO),并通过联合优化储存、IO和计算加速执行这些操作器。初步结果显示,我们关于FATE(流行的FL框架)的加速速度为49.9美元,对于异族LR的速度为88.4美元,对于同性LR为88.4美元。

0
下载
关闭预览

相关内容

Google-EfficientNet v2来了!更快,更小,更强!
专知会员服务
18+阅读 · 2021年4月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年8月21日
各厂推荐算法!
程序猿
17+阅读 · 2018年1月13日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Arxiv
0+阅读 · 2021年9月29日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
VIP会员
相关VIP内容
Google-EfficientNet v2来了!更快,更小,更强!
专知会员服务
18+阅读 · 2021年4月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年8月21日
各厂推荐算法!
程序猿
17+阅读 · 2018年1月13日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员