Junctions reflect the important geometrical structure information of the image, and are of primary significance to applications such as image matching and motion analysis. Previous event-based feature extraction methods are mainly focused on corners, which mainly find their locations, however, ignoring the geometrical structure information like orientations and scales of edges. This paper adapts the frame-based a-contrario junction detector(ACJ) to event data, proposing the event-based a-contrario junction detector(e-ACJ), which yields junctions' locations while giving the scales and orientations of their branches. The proposed method relies on an a-contrario model and can operate on asynchronous events directly without generating synthesized event frames. We evaluate the performance on public event datasets. The result shows our method successfully finds the orientations and scales of branches, while maintaining high accuracy in junction's location.
翻译:连接点反映了图像的重要几何结构信息, 对图像匹配和运动分析等应用具有首要意义。 以往的事件特征提取方法主要侧重于角落, 主要是找到它们的位置, 但是, 忽略了几何结构信息, 比如方向和边缘的尺度。 本文将基于框架的连接点探测器( ACJ) 调整为事件数据, 提议以事件为基础的连接点探测器( e- ACJ), 该探测器在给出其分支的大小和方向时, 生成连接点的位置 。 提议的方法依赖于一个连接点模型, 可以在不生成合成事件框架的情况下直接运行无同步事件 。 我们评估了公共事件数据集的性能 。 结果显示我们的方法成功地找到了分支的方向和尺度, 同时保持了连接点位置的高度准确性 。