An extension of the approximate component mode synthesis (ACMS) method to the heterogeneous Helmholtz equation is proposed. The ACMS method has originally been introduced by Hetmaniuk and Lehoucq as a multiscale method to solve elliptic partial differential equations. The ACMS method uses a domain decomposition to separate the numerical approximation by splitting the variational problem into two independent parts: local Helmholtz problems and a global interface problem. While the former are naturally local and decoupled such that they can be easily solved in parallel, the latter requires the construction of suitable local basis functions relying on local eigenmodes and suitable extensions. We carry out a full error analysis of this approach focusing on the case where the domain decomposition is kept fixed, but the number of eigenfunctions is increased. This complements related results for elliptic problems where the focus is on the refinement of the domain decomposition instead. The theoretical results in this work are supported by numerical experiments verifying algebraic convergence for the interface problems. In certain, practically relevant cases, even exponential convergence for the local Helmholtz problems can be achieved without oversampling.
翻译:提出了将近似元件模式合成法(ACMS)扩展至混杂的赫尔姆霍尔茨方程式的近似元件合成法(ACMS)的延伸,Hetmaniuk 和 Lehoucq 最初采用ACMS 方法,作为解决椭圆部分差异方程式的多尺度方法。ACMS 方法使用一个域分解法,将变异问题分为两个独立部分,将数值近似分解为两个部分:局部Helmholtz问题和全球界面问题。前者自然是本地的,分解的,因此可以很容易地平行解决,而后者则需要根据本地的eigenmodes和适当的扩展来构建适当的本地基础功能。我们对这一方法进行了全面的错误分析,重点是域分解法的固定,但机能的数量却有所增加。这补充了以改进域分解为焦点的椭圆问题的相关结果。这项工作的理论结果得到数字实验的支持,这些实验可以核实界面问题的相近点的相近点。在一定的情况下,甚至具有指数性地将本地的Helmholtzrgzrquest的问题合并,而不用。</s>