The problem of quickest detection of a change in the distribution of a sequence of independent observations is considered. The pre-change distribution is assumed to be known and stationary, while the post-change distributions are assumed to evolve in a pre-determined non-stationary manner with some possible parametric uncertainty. In particular, it is assumed that the cumulative KL divergence between the post-change and the pre-change distributions grows super-linearly with time after the change-point. For the case where the post-change distributions are known, a universal asymptotic lower bound on the delay is derived, as the false alarm rate goes to zero. Furthermore, a window-limited CuSum test is developed, and shown to achieve the lower bound asymptotically. For the case where the post-change distributions have parametric uncertainty, a window-limited generalized likelihood-ratio test is developed and is shown to achieve the universal lower bound asymptotically. Extensions to the case with dependent observations are discussed. The analysis is validated through numerical results on synthetic data. The use of the window-limited generalized likelihood-ratio test in monitoring pandemics is also demonstrated.


翻译:考虑的是快速发现独立观测序列分布变化的问题; 假设变化前分布为已知的和固定的,假设变化后分布以预先确定的非静止方式演变,可能存在某些参数不确定性; 特别是,假设变化后分布和变化前分布之间的累积KL差异随着变化点之后的时间而增加超线性; 已知变化后分布的案例中,随着假警报率降至零而得出对延迟的普遍无药可药性下限; 此外,还开发了窗口限制的Cusum测试,并展示了达到较低约束的无药可治性测试; 对于变化后分布具有参数不确定性的情况,还开发了窗口限制的普遍概率拉拉特测试,并显示其达到普遍的低约束性。 讨论了与依赖性观测有关的情况的扩展。 分析通过合成数据的数字结果加以验证。 在监测流行病时,也演示了窗口限制的通用可能性拉特试验。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
0+阅读 · 2021年11月24日
Arxiv
0+阅读 · 2021年11月24日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员