Efficient neural network backbones for mobile devices are often optimized for metrics such as FLOPs or parameter count. However, these metrics may not correlate well with latency of the network when deployed on a mobile device. Therefore, we perform extensive analysis of different metrics by deploying several mobile-friendly networks on a mobile device. We identify and analyze architectural and optimization bottlenecks in recent efficient neural networks and provide ways to mitigate these bottlenecks. To this end, we design an efficient backbone MobileOne, with variants achieving an inference time under 1 ms on an iPhone12 with 75.9% top-1 accuracy on ImageNet. We show that MobileOne achieves state-of-the-art performance within the efficient architectures while being many times faster on mobile. Our best model obtains similar performance on ImageNet as MobileFormer while being 38x faster. Our model obtains 2.3% better top-1 accuracy on ImageNet than EfficientNet at similar latency. Furthermore, we show that our model generalizes to multiple tasks - image classification, object detection, and semantic segmentation with significant improvements in latency and accuracy as compared to existing efficient architectures when deployed on a mobile device.
翻译:移动设备的高效心电网主干网主干网往往被优化用于FLOPs或参数计数等量度。 但是,在移动设备上部署时,这些量度可能与网络的延迟性关系不大。 因此,我们通过在移动设备上部署多个移动友好网络,对不同的量度进行广泛分析。 我们发现和分析最近高效神经网络中的建筑和优化瓶颈,并提供了减轻这些瓶颈的方法。 为此,我们设计了一个高效的骨干MiveOne, 其变体在iPhone12上达到1米以下的推力时间,在图像网络上达到75.9%最高至1的精度。 我们显示, MoveOne在高效结构中实现了最先进的性能,而在移动时速度要快许多倍。 我们的最佳模型在图像网络上取得了类似移动Former的性能,而其速度则更快。 我们的模型在图像网络上获得了2.3%的顶级精确度高于在类似静电网上的有效度。 此外,我们显示我们的模型对多重任务的概括性任务 -- 图像分类、对象探测和语义分解,在与移动设备上大大改进了粘度和精确性设备。