The paradigm of Federated learning (FL) deals with multiple clients participating in collaborative training of a machine learning model under the orchestration of a central server. In this setup, each client's data is private to itself and is not transferable to other clients or the server. Though FL paradigm has received significant interest recently from the research community, the problem of selecting the relevant clients w.r.t. the central server's learning objective is under-explored. We refer to these problems as Federated Relevant Client Selection (FRCS). Because the server doesn't have explicit control over the nature of data possessed by each client, the problem of selecting relevant clients is significantly complex in FL settings. In this paper, we resolve important and related FRCS problems viz., selecting clients with relevant data, detecting clients that possess data relevant to a particular target label, and rectifying corrupted data samples of individual clients. We follow a principled approach to address the above FRCS problems and develop a new federated learning method using the Shapley value concept from cooperative game theory. Towards this end, we propose a cooperative game involving the gradients shared by the clients. Using this game, we compute Shapley values of clients and then present Shapley value based Federated Averaging (S-FedAvg) algorithm that empowers the server to select relevant clients with high probability. S-FedAvg turns out to be critical in designing specific algorithms to address the FRCS problems. We finally conduct a thorough empirical analysis on image classification and speech recognition tasks to show the superior performance of S-FedAvg than the baselines in the context of supervised federated learning settings.


翻译:联邦学习模式(FL) 的范式与多个客户打交道, 在一个中央服务器的调控下, 参与机器学习模式的合作培训。 在这个设置中, 每个客户的数据是自己私有的, 无法转移到其他客户或服务器。 尽管FL的范式最近受到研究界的极大关注, 选择相关客户 w.r.t. 中央服务器的学习目标没有得到充分探讨。 我们称之为Freed 相关客户选择 。 由于服务器对每个客户拥有的数据的性质没有明确的控制, 选择相关客户的问题在 FL 设置中非常复杂。 在本文中, 我们解决了重要和相关的FRCS问题, 检测拥有特定目标标签相关数据客户的客户, 并纠正了个人客户的腐败数据样本。 我们遵循原则性的方法来解决上述问题, 并用合作性游戏理论的Spley 值概念开发新的Federferal化学习方法。 为此, 我们提议了一个合作性游戏的游戏规则化游戏规则, 使F的梯度与高级客户共享的直径(S- sliveralal) elview lavealal A) exal A exalal Axal acultcultislational lading a culting swequest sweal cultcultcultmalational

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月21日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
4+阅读 · 2021年1月14日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Federated Learning with Personalization Layers
Arxiv
4+阅读 · 2019年12月2日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员