Based on the Fourier extension, we propose an oversampling collocation method for solving the elliptic partial differential equations with variable coefficients over arbitrary irregular domains. This method only uses the function values on the equispaced nodes, which has low computational cost and versatility. While a variety of numerical experiments are presented to demonstrate the effectiveness of this method, it shows that the approximation error fast reaches a plateau with increasing the degrees of freedom, due to the inherent ill-conditioned of frames.
翻译:基于 Fourier 扩展, 我们提议了一种过于抽样的合用法, 用于解决具有任意非常规域的可变系数的椭圆部分差异方程式。 这种方法只使用平衡节点上的函数值, 其计算成本低且多功能性低。 虽然提供了各种数字实验来证明这种方法的有效性, 但是它表明近似误差很快到达高原, 自由度因框架的内在条件不完善而提高。