Decentralized cryptocurrencies are payment systems that rely on aligning the incentives of users and miners to operate correctly and offer a high quality of service to users. Recent literature studies the mechanism design problem of the auction serving as a cryptocurrency's transaction fee mechanism (TFM). We find that a non-myopic modelling of miners falls close to another well-known problem: that of online buffer management for packet switching. The main difference is that unlike packets which are of a fixed size throughout their lifetime, in a financial environment, user preferences (and therefore revenue extraction) may be time-dependent. We study the competitive ratio guarantees given a certain discount rate, and show how existing methods from packet scheduling, which we call "the undiscounted case", perform suboptimally in the more general discounted setting. Most notably, we find a novel, simple, memoryless, and optimal deterministic algorithm for the semi-myopic case, when the discount factor is up to ~0.770018. We also present a randomized algorithm that achieves better performance than the best possible deterministic algorithm, for any discount rate.
翻译:暂无翻译